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Boundary layer of the dissociated gas flow
over a porous wall under the conditions of
equilibrium dissociation

Branko Obrovié * Dragisa Nikodijevié !
Slobodan Savié *

Abstract

This paper studies the ideally dissociated air flow in the bound-
ary layer when the contour of the body within the fluid is porous.
By means of adequate transformations, the governing boundary
layer equations of the problem are brought to a general form. The
obtained equations are numerically solved in a three-parametric
localized approximation. Based on the obtained solutions, very
important conclusions about behaviour of certain boundary layer
physical values and characteristics have been drawn.

Keywords: boundary layer, dissociated gas, equilibrium dis-
sociation, porous contour, general similarity method, porosity
parameter

*Faculty of Mechanical Engineering University of Kragujevac Sestre Janjié 6,
34000 Kragujevac, Serbia and Montenegro

tFaculty of Mechanical Engineering University of Ni§, Aleksandra Medvedeva 14,
18000 Nis, Serbia and Montenegro

tFaculty of Mechanical Engineering University of Kragujevac Sestre Janjié 6,
34000 Kragujevac, Serbia and Montenegro, e-mail: ssavic@kg.ac.yu

167




168 B.Obrovié, D.Nikodijevié, S.Savié

Nomenclature

A B boundary layer characteristics

a, b constants

C; mass concentration of any ¢ component

Cp specific heat of gas dissociated at constant pressure

Doy = Dy = D coefficient of atomic component diffusion

D; diffusion coefficient of any ¢ component

Fyp characteristic boundary layer function

fi=f first form parameter

fr set of form parameters

H boundary layer characteristic

h enthalpy

h nondimensional enthalpy

he enthalpy at the outer edge of the boundary layer

h; enthalpy of the mass unit of any ¢ component

B enthalpy at the wall of the body within the fluid

hy enthalpy at the front stagnation point of the body
within the fluid

Le Lewis number

[ function

M discrete point

Pr Prandtl number

D pressure

Q nondimensional function

R; gas constant of any ¢ component

Sm; Schmidt number (diffusion Prandtl number) of any

1 component

s new longitudinal variable

U longitudinal projection of velocity in the boundary layer

Ue velocity at the boundary layer outer edge

Vw conditional transversal velocity

v transversal projection of velocity in the boundary layer

Uy velocity of injection (or ejection) of the fluid

Wi mass formation rate of any 7 component

T,y longitudinal and transversal coordinate

% function
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A*
A**

k= fo

P

o

Pe

Po
Pw

new transversal variable

conditional displacement thicknesses

conditional momentum loss thickness
nondimensional friction function

nondimensional transversal coordinate

local compressibility parameter

first porosity parameter

set of porosity parameters

thermal conductivity coefficient

dynamic viscosity

known values of dynamic viscosity of the dissociated
gas

given distributions of dynamic viscosity at the wall
of the body within the fluid

kinematic viscosity at a concrete point of the
boundary layer

density of ideally dissociated gas

dissociated gas density at the outer edge of the
boundary layer

known values of density of the dissociated gas
given distributions of density at the wall of the
body within the fluid

shear stress at the wall of the body within the fluid
nondimensional stream function

stream function

new stream function

1 Introduction

Governing equations of the considered problem

This paper investigates dissociated gas (air) flow in the boundary layer
under conditions of equilibrium dissociation. To be more precise, it in-
vestigates laminar boundary layer on a body of arbitrary shape, whereas
the dissociated gas flow is planar and the contour of the body within
the fluid is porous.
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The main goal of this investigation, as with our earlier studies, is to
apply the general similarity method to obtain the so-called generalized
boundary layer equations of the considered problem, and to solve them.

When the flow velocity of the gas (air) is high, as with supersonic
flight of aircrafts through the Earth atmosphere, the temperature in the
viscous boundary layer increases significantly. These high temperatures
cause thermochemical reactions of dissociation and recombination. Due
to the thermochemical processes in the boundary layer, the air becomes
a multicomponent mixture of atomic and molecular components. There-
fore, for the steady gas mixture flow followed with chemical reactions,
the complete equation system of laminar planar boundary layer has the
following form:

The equations of the system (1) stand for: dynamic equation, mix-
ture continuity equation, diffusion equation of (any) ¢ component, energy
equation and mixture state equation, respectively. Each of the mixture
components (¢ = 1+ ¢ — 1) has a corresponding diffusion equation.
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The notations common in the boundary layer theory are used for cer-
tain physical values in these equations {1, 2].

According to Lighthill, gas mixture flow can be replaced with a bi-
nary mixture model consisting only of an atomic and a molecular com-
ponent. Ideally dissociated gas is defined this way. Air at temperatures
around 2 000 K and even up to around 8 000 K can be considered [1]
an ideally dissociated gas. An ideally dissociated gas model can be ap-
plied to the boundary layer flow. Then the mass concentration of the
atomic component is defined as C; = p1/p = pa/p = C4 = «; while
the mass concentration of the molecular component is Cy = po/p =
pm/p = Cuy =1— «a, where the subscripts A and M stand for atomic,
i.e., molecular component of the ideally dissociated gas.

When dissociation and recombination velocities are high enough,
thermochemical equilibrium is established in the boundary layer. In
that case the concentration C) = « is directly related to the absolute
temperature i.e. enthalpy.

If it is assumed that the thermochemical equilibrium is established in
the whole boundary layer area, then [3, 4], the boundary layer equations
(15) can be written in the following form:

0 0
oz (PU)+a—y (pv) =0,

Pz pv@y = Pelle Oy “ay ’

Pl TPy = TUPNe T TH Gy
0 | p Oh

+8—y [ﬁ (1+1) ?95] :

This equation system (2) was solved and analyzed by Krivcova in her
papers [3, 4], analytically by development of power series with respect to
so-called parameters, or numerically by application of the so-called para-
metric method. The equations were solved under boundary conditions
for the nonporous contour of the body within the fluid.
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Compressible fluid flow problems have been investigated by scientists
all around the world as well as in Serbia, especially by Saljnikov [10] to-
gether with the members of the so-called Belgrade School of Boundary
Layer. To our knowledge, the most important results obtained by in-
vestigation of the dissociated gas flow were presented by Dorrance in
[1]. Members of the School led by Loitsianskii [8] also obtained some
important results in the field of dissociated gas flow in the boundary
layer.

This paper presents the results of investigation of the ideally dissoci-
ated gas (air) flow under conditions of equilibrium dissociation where the
wall of the body within the fluid is porous. These results were obtained
by application of the general similarity method firstly suggested by Loit-
sianskii, and later improved by Saljnikov, but mostly for its application
to incompressible fluid flow in the boundary layer.

The corresponding boundary conditions of the considered flow prob-
lem are:

u=0, v=uy(z), h=hy for y=0,

u — ue(T), h — he(z) for y > o00. (3)

In the governing equations of the system (2), as well as in the bound-
ary conditions (3), the usual notations are used: u(z, y) - longitudinal
projection of velecity in the boundary layer, v(z, y) - transversal pro-
jection, p - density of ideally dissociated gas (mixture), u - dynamic
viscosity, h - enthalpy, Pr - Prandtl number, and z, y - longitudinal and
transversal coordinate. The Function | = {(p, h) for the equilibrium
bicomponential mixture is determined by the expression [3],

= (Lo - 1) (ha—ar) (52) (@)

p
where p - denotes pressure, and Le is Lewis number. The subscript "e”
stands for physical values at the outer edge of the boundary layer and
the subscript "w” for values at the wall of the body within the fluid. It
is pointed out that v, (z) represents the given velocity with which the
dissociated gas flows transversally through a solid porous wall of the
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body within the fluid (Fig.1). Here, v,, > 0 at injection, and v, < 0 at
ejection of the gas.

X

Figure 1: Flow in the boundary layer

The nondimensional transfer coefficient, Prandtl and Lewis number
are defined with the known expressions:

HCp pcpD

Pr=—*= Le = —— 5

3 3 (5)

where X is thermal conductivity coefficient, ¢, - specific heat of gas

dissociated at constant pressure and Dy, = D1y = D - coefficient of

atomic component diffusion. These numbers can be regarded as constant

values [1, 3]. In our further studies Prandtl number is considered to be
Pr=0.712.

2 Transformation of boundary layer equa-
tions

In order to apply the general similarity method, instead of physical co-
ordinates z, y, by analogy with other already solved problems of com-
pressible fluid flow [6, 7], we introduce new variables in the form of the
following transformations:
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x Y
1
/ patds = s(o); 2=~ [ poy=s(z.p), (@
0

1
Po Ho

S

0

The stream function (s, 2z) is also introduced in accordance with
the relations:

o - po Mo 0z p\ __ OY
u—a, U_pwuw (uaer"upO =~ 5 (7)

which result from the continuity equation.

In the expressions (6) and (7) pp and po = po vp stand for the known
values of density and dynamic viscosity of the dissociated gas (air). Here,
pw and p,, denote the given distributions of these values at the wall of
the body within the fluid, and 1 stands for kinematical viscosity at a
concrete point of the boundary layer.

From the first two equations of the system (2), by a usual procedure —
by integration transversally to the boundary layer and by transformation
of the variables, the momentum equation of the considered problem is
obtained. In its all three forms, the corresponding momentum equation
is:

Az Fp  df Wl 1 dA™ By,

Y _Yep | e . .
& o ds wlvtwh A Tuay

?

While obtaining the momentum equation, the following values are
introduced: parameter of the form f, value Z**, conditional displace-
ment thicknesses A*(s) and A**(s) conditional momentum loss thick-
ness, nondimensional friction function ((s), porosity parameter A(s),
characteristic function Fy, and nondimensional value H. With this flow
problem we have:

(8)

’LL’A**2 A**2
f(s) — e — u/e Z** — fl , Z** — ,
140} 40

wo= [ (&)=
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o0

AY(5) = / 5(1 - uﬁ) dz

0

Fip =2 — (24 H)f) — 24\,

Vi [0 A** B VwA**

Hw o 0]

Ho
Vu} = —Vuy;,
w

:Ala

A(s) =

where the value V,(s) can be named conditional transversal velocity at
the inner edge of the boundary layer. (In these expressions and further
on ’ stands for a derivative with respect to the variable s).

Applying the transformations of the variables (6) and the stream
function (7), the governing system (2), (3) of the considered dissociated
gas flow problem comes down to the following equation system:

%ﬁ _ .B_q’b@—-ge_uu/_i_y _a_ @
0z 050z 0s 022 p ¢ 05 022 )’
oy Oh 9 Oh _ p. 00 o\
52 85 85 B2 plteg, THU <a2 *

(10)

9 [Q on]
Yo o {’15; (1+1) 5},

oY oY o

—_ = —_— = —_—— = — = Ny = ,

P 0, B 0 Vs h=nh for z=0
Al — U(s), h — he(s)  for z— oo.
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The nondimensional function @ is determined as:

Q = pu; Q=1 for 2=0,
Puw P

(11)

Q — peue:@(s) for z— o0.
Pw fhw

As seen from the expression (8), the momentum equation is by its
form the same as the momentum equation of incompressible fluid [8].
And the dynamic equation of the system (10) has a similar form to the
corresponding equation of incompressible fluid.

However, it is noticed that the (underlined) boundary layer condition
for a partial derivative is 91 /0s # 0. With the application of the general
similarity method, it is important that this boundary layer condition
should equal zero. Therefore, as with incompressible fluid, [8] the stream
function ¥ (s, z) is divided into two parts. If the notation v (s, 0) =
Y (s) is introduced for the stream function for the flow along the wall
of the body (z = 0), then the stream function for this flow problem can
be written in the form of the relation

V(s 2) =t (s)+ 9" (s,2),  ¢P7(s,0)=0. (12)

where 9 (s, z) is a new stream function.
When we apply the relation (12), the equation system (10) trans-
forms into the system:

aw* 62,‘&* B 8¢* a2w* B d'l/)w 82,;0* B &u . ey 2 Q 82w*

5z 0s0z  O0s 022  ds 022 p cteT0 822 )

0y* Oh Oy Oh  dyuOh  pe O (a%p* ’

D: s s 8: ds 0z~ pleteay TQ G )t
(13)

o [Q on]
Yo [ﬁ(1+l)_8_z?} ;
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oy _

P 0, h = hy for z=0,

P(s, 2) =0,

o~
0z

— U(s), h—hes) for z-—o .

Each of the equations of the system (13) contains one (underlined)
term on the left, where di,/ds appears. It is noticed that

dYu(s) _ (0¥ __fo,
= (%>2_0 = vaw =— V. (14)

In the case of a nonporous wall of the body within the fluid (for
which v,, = 0), in the equations of the system (13) the underlined terms
equal zero, therefore the obtained equation system is exactly the same
as the corresponding system [3]. The characteristic function Fy, comes
down to the corresponding function F.

3 Generalized boundary layer equations of
the considered flow problem

In accordance with the ideas followed with the application of the general
similarity method todifferent flow problems for both compressible and
incompressible fluid [6, 7], in these studies we introduced new variables
and a new stream function ®(s, ). However, after comprehensive and
rather complicated numerical transformations, it has been determined
that, here also, new transformations should be introduced in the form
of the following expressions:

K(s) = aVO/ug"lds , a, b= const.

0
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’l/)* (S,Z) :ui—b/ZK(s) ’ (I)(T]7 K, fl>f23f37 cery A17A2aA31 )) (15)

h(S,Z) - h‘lﬁ(n3 K, f11f27f33 ) AlaAQaAfi, ))

2
(he + % =h = const.)

In defined so-called similarity transformations, the following nota-
tions are used: 7(s, z) - newly introduced transversal variable, ® - new
stream function, h- nondimensional enthalpy, and h; - enthalpy at the
front stagnation point of the body within the fluid.

Here also, based on the newly introduced transversal variable n(s, z),
important values and characteristics of the boundary layer (9) can be

written in the form of suitable relations:

A**:_]_{_@ S A =H A(S) _-_f____aue/ug—lds’

82@> ( 8u) Puwlliy  Ue
_p (£2) o (L) L Pubw , 16
¢ (3772 =0 "oy =0  Po A ¢ (16)

Y (pe 0% > 0 5%
Aw= [ (— - —) an, B [ 3 (1— H) dn |
p)
J p n J on on

where the values A and B are assumed to be continual functions of the
longitudinal variable s. The local parameter of dissociated gas com-
pressibility [4] k = fo, the set of parameters of the form fi(s) of Loit-
sianskii’s type [8], as well as the set of porous wall parameters [9] Ax(s)
in the functions ® and h, newly introduced in the general similarity
transformations (15), are determined with the expressions:
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k= fo(s) = 21;%1 o fuls) = ulg—lugk) 7k
v (k—-1) (17)
A(s) = —uf™? [ == Zwk12 0 k=1,2,3..).
k(s) Ue (\/%> ’ 4 )
For k = 1 we obtain fi(s) = wu, Z**- a form parameter already

known in the boundary layer theory, while the porosity parameter A; =
—(VwA* /1p) is the same as the earlier defined parameter (9). Parame-
ters of the sets (17) satisfy recurrent simple differential equations of the
form:

Ue . dK
—fh——=2cf1 =60,
ul” ds

_fldfk:[(k—l) H+EkFgp) fr+ fir =6k, (18)

—fl?m—lC ={(k—=1) A+[(2k—1)/2] Fgp} A+ Aps1 = X

Applying the similarity transformations (15), (17) to the equation
system (13) the generalized boundary layer equation system has been
obtained. The outer velocity u.(s) appears explicitly in neither of the
equations of the obtained system:

The obtained generalized equation system, together with the trans-
formed boundary conditions, is:

) 92 aB*+ (2-b) fi LS fpe (09 2
%(Q 5?72) Y % T he T(%) y
Ay 0D 1 el b 5P o0b 9%d
T Zf)k - - _ = Z=
B on? B | on Ondfi df On?

i 90 o0 90 50
Xk \ By 8n0As ar. o2 )|’
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8 [Q 8R] aB2+(2-b)f, . Oh
7 (B0 o)+ el e -
26 fi pe 0P 5?d _A_l@_

B, og " Q( K By~

L [fa (2 oy,
=0 on 8fx  Ofc On

i 99 oh 9o 0h\]| .
& \on 8A, T A, On) |

®=0, @z(), h = h,, = const. for n=0,
I
) L
2_77-)1’ h— he(s)=1—k for n—o0.

Both equations of the system (19), on the left hand-side, contain one
term that depends on the porosity parameter A;. On the right hand-side,
each of the equations contains a sum of terms that are multiplied with
the function xx. In the case of a non-porous wall (v, = 0, V,, = 0) all
the porosity parameters equal zero, therefore these terms also equal zero.
In that case, the obtained equations take the form of the corresponding
equations (3] for the case of a flow along a non-porous wall.

Because of numerous parameters, the obtained equations are solved,
as with other flow problems, in a so-called n— parametric approxima-
tion. In the case when all the parameters are fr = 0 and Ay = 0 when
k > 2, the obtained equation system (19) comes down to a system of
partial equations with four independent variables: n, , fi, Ay, and
this represents a three-parametric approximation. Furthermore, when
the general similarity method is applied, a so-called localization is also
done. The first derivatives with respect to the parameters k and f; are
ignored. As seen in earlier studies [3, 4], the influence of the compress-
ibility parameter & to the nondimensional enthalpy h is significant. For
a more correct calculation, localization with respect to the parameter
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k can be performed in relation to the nondimensional total enthalpy
g=(h+u?/2)/hy, ie., it is justified to assume that Og/dk =~ 0. There-
fore in the three-parametric (fo = k # 0, fi = f #0, Ay = A #
0, fo=fs=..=0,Ay = A3 = ... = 0) twice localized approxima-
tion (0/9k = 0, 9/0A; =0), the corresponding boundary layer equation
system of the considered flow problem has the following form:

pe _ (02N\']
p In

o ( 0%\ aB*+(2-b)f _ 0@ f
 (95) T T

Ad® Fuf (02 80 02 0%

B 0n* B2 on Ondf of on?2 )’
o [Q oh]  aB*+(2—0b) f _ Oh
5 Lo 005+ e g

o2k f 8 | pe P\ * 520\ ?
B o [T (1) }“’*Q (57) *

+£8_B _ Faf 6‘_@8_71 _ 8_(I> 6_B . (20)
Bon B \onof Of on)’
0P - -

g, an 0, h., = const for n=0,
g_i_)L h—he(s)=1—Kk for n—o00.

Therefore, the problem of the planar flow of ideally dissociated gas (air)
in the boundary layer under conditions of equilibrium dissociation is
defined with the generalized equation system (20). Hence, investigation
of this problem comes down to solution of the obtained approximate
equation system.
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4 Numerical solution of the transformed
equation system. Obtained results

In papers [3, 4] it is stated that for dissociated air Le =~ 1. It follows that
the function [ (which is a part of the energy equation) is defined with
the expression (4) and that it equals zero. Furthermore, in the papers
written by the same author, based on the tables of the thermodynamic
functions for air, it is proven that the following very correct approximate
formula can be applied for the wide range of pressure changes:

) o 1/3
- ()" (21)
and it is used in this paper.

For the density ratio in this paper, we used the approximation p./p =~
h/(1 — k) obtained from the corresponding rather complicated formula
stated in [3].

Besides the previous relations for certain physical values, for numer-
ical integration of the system (20), it is necessary to decrease the order
of the dynamic equation. Introducing the transformation

%=%§=<ﬁ=<ﬂ(n, £, [, A) (22)
the order of the dynamic equation is decreased; therefore the correspond-
ing equation system of the considered dissociated air flow problem takes
the following form:

0 (Q590>+aB2+(2——b)f®6<p f ( h B ()02>+A8(,0¥

an \ Yoy 2 B? on  B® \1-—«x B on
_ Faf Op 0% Op
T of af on )’
_ 2 _
9 (_Q_ R\ ,-aB®+(2-b) f o Ok
on \ Pr 0n 2 B2 on

26 f h 9 [0\ ? ABB-_
5o (2 9) 2 (57) 55 -
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 Faf (waﬁ o® aﬁ>

p—1, h—oh(s)=1-k for np—o00.

Numerical solution of the obtained system of nonlinear and conjugated
differential partial equations (23) is performed by the finite differences
method, i.e., so-called ”passage method”. According to the usual scheme
of the finite differences, the equation system (23) is firstly transformed
into an equivalent system of algebraic equations, which is solved by it-
erative procedure, taking into consideration the order of calculation of
certain functions and linearization. The values of the functions ¢, ®, h
are calculated at discrete points M of the half planar integration grid,
i.e., at discrete points of each calculating layer (K+1). For each calcu-
lating layer with this, as well as other complicated boundary layer fluid
flow problem [6, 7], the number of discrete points N = 401 has been
determined.

For the concrete solution of the equation system (23), i.e., for the
solution of the corresponding algebraic system, the nec¢ssary program
in FORTRAN has been written. It is based on the program used in [10].
All the necessary calculations have been made for the concrete values of
a and b , and they are: a = 0.4408; b = 5.7140; which, according to
[10], represent the optimal values. For the Prandtl number, as already
stated, for the case of dissociated air flow Pr = 0.712. While calculating
the characteristic functions B and Fy, , at a zero iteration, the values
By, = 0.469 and F}, ., = 0.4411, were accepted, as already done in
the paper [10 ].

Numerical solutions of the equation system (23) obtained in these
studies are given in the form of suitable tables. Table 1 represents,
for example, the solution of the boundary layer equations for the case
defined with f = 0.0 and A = 0.02.
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Table 1: One of the solutions of the dissociated gas boundary layer

equations

f =0.0000000D +00 A =0.02 Af = 0.1000000D — 02
A = —0.1758993 B = 0.5415912 B? = 0.2933210
f/B? = 0.0000000 H = -0.3247825  9%*®/0n? = 0.6111155
F,, = 0.6219525 k= 0.04 ¢ = 0.3309762
M 7 U/ Ue o h Q
1 0.0000000 0.0000000 0.0000000 0.0152000 1.0000000
9  0.4000000 0.1040232 0.0220045 0.0901270 0.5524966
17 0.8000000 0.2288988 0.0876944 0.1956200 0.4267204
25  1.2000000 0.3737805 0.2077863 0.3188060 0.3626094
33 1.6000000 0.5250726 0.3875796 0.4496218 0.3233444
41 2.0000000 0.6683210 0.6267695 0.5777911 0.2974114
49 2.4000000 0.7898973 0.9193251 0.6932084 0.2798938
57 2.8000000 0.8809334 1.2545788 0.7878932 0.2682000
65  3.2000000 0.9402648 1.6198119 0.8580680 0.2606797
25  1.2000000 0.3737805 0.2077863 0.3188060 0.3626094
33 1.6000000 0.5250726 0.3875796 0.4496218 0.3233444
41 2.0000000 0.6683210 0.6267695 0.5777911 0.2974114
49  2.4000000 0.7898973 0.9193251 0.6932084 0.2798938
57 2.8000000 0.8809334 1.2545788 0.7878932 0.2682000
65  3.2000000 0.9402648 1.6198119 0.8580680 0.2606797
73 3.6000001 0.9736425 2.0033170 0.9048068 0.2561116
81  4.0000001 0.9898044 2.3964360 0.9327349 0.2535295
89  4.4000001 0.9965468 2.7939177 0.9477225 0.2521859
97  4.8000001 0.9989764 3.1931097 0.9549622 0.2515470
105 5.2000001 0.9997346 3.5928826 0.9581170 0.2512706
113 5.6000001 0.9999398 3.9928267 0.9593592 0.2511621
121 6.0000001 0.9999881 4.3928146 0.9598016 0.2511235
129 6.4000001 0.9999979 4.7928124 0.9599442 0.2511111
137 6.8000001 0.9999997 5.1928120 0.9599857 0.2511074
145 7.2000001 1.0000000 5.5928120 0.9599967 0.2511065
153 7.6000001 1.0000000 5.9928120 0.9599993 0.2511063
161 8.0000001 1.0000000 6.3928120 0.9599999 0.2511062
169 8.4000001 1.0000000 6.7928120 0.9600000 0.2511062
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177
185
193
201
209
217
225
233
241
249
257
265
273
281
289
297
305
313
321
329
337
345
353
361
369
377
385
393
401

8.8000001

9.2000001

9.6000001

10.0000001
10.4000002
10.8000002
11.2000002
11.6000002
12.0000002
12.4000002
12.8000002
13.2000002
13.6000002
14.0000002
14.4000002
14.8000002
15.2000002
15.6000002
16.0000002
16.4000002
16.8000003
17.2000003
17.6000003
18.0000003
18.4000003
18.8000003
19.2000003
19.6000003
20.0000003

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

7.1928120

7.5928120

7.9928120

8.3928120

8.7928120

9.1928120

9.5928120

9.9928120

10.3928120
10.7928120
11.1928120
11.5928120
11.9928120
12.3928121
12.7928121
13.1928121
13.5928121
13.9928121
14.3928121
14.7928121
15.1928121
15.5928121
15.9928121
16.3928121
16.7928121
17.1928121
17.5928121
17.9928121
18.3928121

0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
0.9600000
-0.9600000
0.9600000
0.9600000
0.9600000

0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062
0.2511062

This solution describes the dissociated gas flow in the laminar bound-
ary layer along a flat plane (u, = uo = const, f = u, Z* =0, k =
ko = u2,/2hy). Only some, of the obtained numerical solutions are shown
in the form of corresponding diagrams. The following figures show: di-
agram of nondimensional velocity (Fig. 2), nondimensional enthalpy
(Fig.3) and (Fig.4), as well as the diagrams of the characteristic val-
ues of the boundary layer B(f) (Fig.5), Fy,(f) (Fig.6), ¢(f) (Fig.7) for
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different values of the porosity parameter. The diagram h(n) is espe-
cially shown for different values of the compressibility parameter at the
cross-section of the boundary layer defined with f = 0.0 (Fig.8).

5 Discussion of the obtained results and
conclusions

Based on the given (and other) diagrams the general conclusion that
the profiles of the obtained solutions of the boundary layer equations,
concerning their behaviour, are the same as with other similar flow prob-

lems.
For the considered flow case, the following conclusions can be defined:

e Nondimensional velocity u/u. at different cross-sections of the

boundary layer (different f) converges very fast towards one (Fig.2).

e A significant influence of the compressibility parameter x on the
distribution of the nondimensional enthalpy with respect to the
boundary layer cross-section is noticed. The compressibility pa-
rameter changes even the general character of behaviour of the
enthalpy distribution in the boundary layer. For lower values of
k , the enthalpy h reaches the maximum value that equals 1 —x, at
the outer edge of the boundary layer (Fig.3). However, for higher
values of x, the enthalpy i has a maximum Amax > 1 — & within
the boundary layer itself (Fig.8).

e The diagram (Fig.7) clearly shows that the porosity parameter A
has an influence on the nondimensional friction function (, and
therefore on the boundary layer separation point. We can also no-
tice a great influence of this parameter on other important bound-
ary layer characteristics: the value B (Fig.5) and the function Fy,
(Fig.6).

e If the transversal velocity of injection v, increases, based on the
definition of the porosity parameter A(s) (9), it can be concluded
that the value of this parameter decreases. The diagram (Fig.7)
shows that with the decrease of the porosity parameter, the bound-
ary layer separation point moves downstream.
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Generally, there are some difficulties in application of the general
similarity method to the problem of ideally dissociated air flow in
the boundary layer around the porous contour. They are mainly
of mathematic nature. The difficulties concerning physical, i.e.,
thermochemical problems of the gas flow itself are almost insolu-
ble. This method, however, gives important quality results that
enable us to study the behaviour of distributions of physical and
characteristic values for different boundary layer cross-sections and
different forms of the outer velocity functions.

e In order to obtain the more correct (quantity) results, it is neces-
sary to integrate the system (19) in a three-parametric approxima-
tion but without localization with respect to the parameter A, and
especially without localization with respect to the compressibility
parameter K = fo. According to some earlier studies [5], it can
be expected that this flow problem would show that the change of
the compressibility parameter has a great influence on the change
of the enthalpy in the boundary layer.

At the end of this paper, it is stated that with this case of com-
pressible fluid flow, we encountered some problems while solving
the equation system (23). They are reflected in interruptions in
work of the program for some input values in the diffuser area of
the boundary layer.



188 B.Obrovié, D.Nikodijevié, S.Savié

1.0 ul e df
Ll _
//// j:,=0.4
0.6 A=0.1
/%Q h,=0.0152
04 1. f=-0.18
0z N2 2. £=0.00
' 3. f=0.18
00 o1 "

0 2 4 6 8 10 2 ¥4 16 18 20

Figure 2: Diagram of nondimensional velocity u/u.
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Figure 3: Diagram of nondimensional enthalpy (k = fo = 0.06)
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Figure 4: Diagram of nondimensional enthalpy (k = fy = 0.6)
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Figure 8: Diagram of nondimensional enthalpy in the cross-section of the
boundary layer when f = 0.0 for different values of parameter « = fy
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Graniéni sloj strujanja disociranog gasa: preko
poroznog zida u uslovima ravnotezne disocijacije

UDK 532.526, 533.15

U radu je istrazivano strujanje idealno disociranog vazduha u grani¢nom
sloju u uslovima ravnotezne disocijacije. Pri tome je kontura zida op-
strujavanog tela porozna. Pomoc¢u pogodnih transformacija, polazne
jednacine granicnog sloja razmatranog problema dovedene su na uopsteni
oblik. Dobijene jednacine su numericki reSene u troparametarskom
lokalizovanom priblizenju. Na bazi dobijenih rezultata izvedeni su odgo-
varajuci zakljucci o ponasanju pojedinih fizickih veli¢ina i karakteristika
grani¢nog sloja razmatranog problema strujanja fluida.
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